anaconda+pytorch+tensorflow+keras

    环境

    conda create --name py37 python=3.7
    activate py37



    新版本

    pip install jupyterlab

    jupyter lab


    经典版本

    #pip install ipykernel

    pip install jupyter

    python -m ipykernel install --user --name py37 --display-name "py37"


    外部访问

    生成配置文件

    jupyter notebook --generate-config

    (记录下地址)


    生成密码
    打开ipython,创建一个密文的密码

    In [1]: from notebook.auth import passwd
    In [2]: passwd()

    Enter password:
    Verify password:
    Out[2]: 'sha1:22bd77296e00:01bc151a1f7a6de107d31772e9c6c2ccaa773529'


    修改默认配置文件
    vi ~/.jupyter/jupyter_notebook_config.py


    c.NotebookApp.ip='*'
    c.NotebookApp.password = u'sha1:22...刚才复制的那个密文'
    c.NotebookApp.open_browser = False
    c.NotebookApp.port =8888


    jupyter notebook



    pytorch

    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

    更新的版本1.13.1:

    pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117

    https://pytorch.org/get-started/locally/

    版本2.0:

    pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html -i https://mirrors.bfsu.edu.cn/pypi/web/simple -U
    pip install -U -I --no-deps xformers==0.0.17rc482 -i https://mirrors.aliyun.com/pypi/simple/

    版本2.0.1:

    pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio --extra-index-url https://download.pytorch.org/whl/cu118



    tensorflow

    https://developer.nvidia.com/cuda-downloads
    https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda_8.0.61_win10-exe


    https://developer.nvidia.com/cudnn
    http://developer2.download.nvidia.com/compute/machine-learning/cudnn/secure/v5.1/prod_20161129/8.0/cudnn-8.0-windows10-x64-v5.1.zip


    pip install tensorflow-gpu


    keras

    conda install theano
    conda install mingw libpython
    pip install tensorflow
    pip install keras
    conda install h5py




    mxnet

    By popular demand, DMLC has added MXNet support for Keras. Please follow these steps for having it:


        After having CUDA driver, install MXNet like
        pip install mxnet-cu80

        Install Keras with MXNet support:
        git clone --recursive https://github.com/dmlc/keras
        cd keras
        python setup.py install

        Assign MXNet as Keras backend:
        KERAS_BACKEND=mxnet python -c "from keras import backend"

        “Using MXNet backend.” means Keras+MXNet is successfully installed. Enjoy.

        Q&A:
            I am using Windows, can I have it? Yes, just replace step 1 with pip install mxnet-cu80-win
            I don’t have a GPU, can I have a try? Yes, just replace step 1 with pip install mxnet or pip install mxnet–mkl if you have Intel CPU(s).
            How is compared to TensorFlow backend? em, do you want to benchmark it? Please feel free to submit benchmark results and bugs to github issue.




标签: anaconda pytorch tensorflow keras